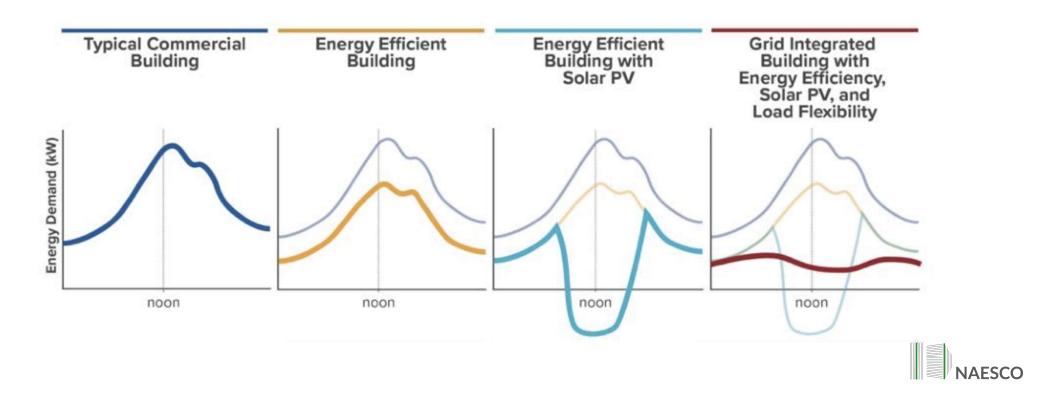
GRID INTERACTIVE EFFICIENT BUILDINGS GSA/DOE RFI: Next Steps & Opportunities

Timothy Unruh | NAESCO Kevin Powell | U.S. General Services Administration Cara Carmichael | Rocky Mountain Institute



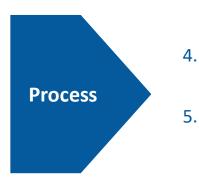
What is a Grid-interactive Efficient Building (GEB)?

Technologies, solutions, and/or energy services that can cost-effectively provide building load flexibility

Key Differentiators of Grid Interactive Buildings

ATTRIBUTE		TODAY	FUTURE
1.	Interoperability and intelligence from building to grid	 DR programs, often manual, fairly static 	 Ability to receive and respond to utility price signals Ability to send load flex potential (capacity market participation)
2.	Interoperability and intelligence across building systems	 BMS system for major loads (HVAC) Individual system controls (Lighting, storage) 	 Single, overarching integrator to monitor and control all loads, inc. plug loads and storage Ability to optimize for cost, carbon, resilience, etc.
3.	Load flexibility and demand-focused optimization	Thermal energy storageBattery storage	 Intelligence to track and map demand, shift or shed rapidly based on inputs such as price, weather, carbon, events, etc.

The Value Potential for GEB in GSA's Portfolio: Key Findings


Purpose	Show the value of GEBs to the GSA, the federal government, and taxpayers; RMI modeled 29 demand focused, GEBs measures across 6 locations
The Value of GEBs	Each model shows a sub-4 year payback The full portfolio can generate \$50MM in annual cost savings (20% of the GSA's annual energy spend) GEBs could generate up to \$70MM/year in value to grid users while improving resilience and reducing carbon intensity
Key Findings	HVAC, lighting, plug load, renewable energy, and storage measures define the cost-optimal strategyInvest in fully controllable systems, stage large buildingConsistent demand management delivered more value than peak shaving

RMI study – Aug 2019

GSA Green Building Advisory Committee: GEB Task Group Key Recommendations

- 1. Demand savings should be included and is generally allowed
- 2. Use actual rates, avoid using blended rates
- 3. DR programs that provide a fixed monthly payment are the easiest to incorporate, even if only for a period of time (e.g. 3 yrs)

Structure

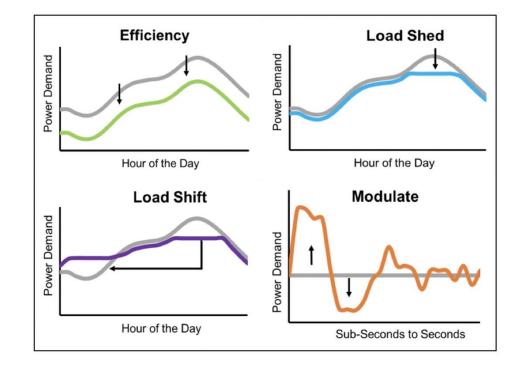
- 4. Training is needed on both sides of the contract
 - Continuous demand management may require O&M services or greater risk sharing

GSA GBAC Advice Letter – Dec 2019

What is the Joint GSA/DOE GEB RFI?

In-field validation of GEB technology's performance

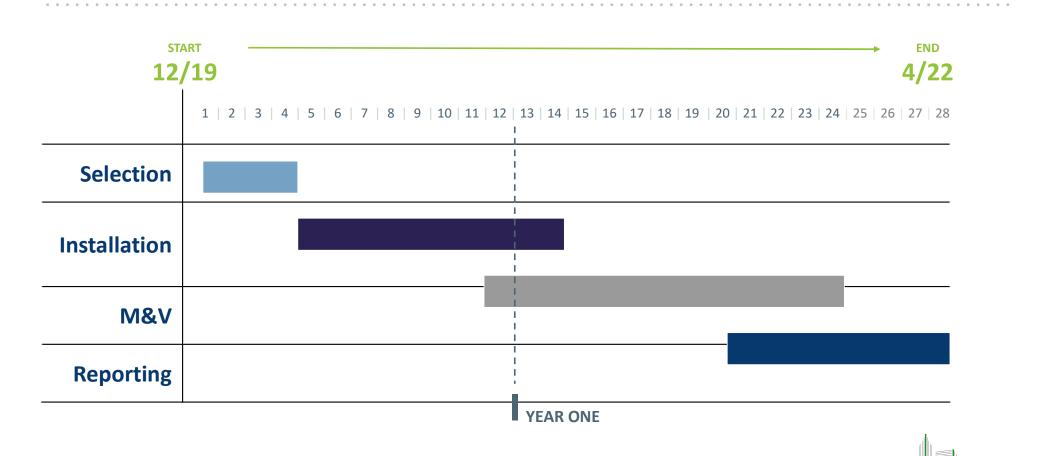
Larger portfolio



RFI Requirements

Must include 3 out of 4 strategies:

- Energy efficiency
- Load shed
- Load shift
- Modulation of electrical load at the sub-seconds to seconds level



Common Themes Across Solutions Submitted to RFI

- Leverage existing energy-saving, energy generating, and/or energy storage technologies
- **Require** modern building automation system (BAS) and engaged building manager
- Include emerging software solutions that integrate, coordinate and sometimes automatically control multiple building end-use systems, distributed energy resources (DERs) and onsite storage to shed and shift loads
- **Require ancillary energy/engineering services** to deliver a comprehensive solution
- Uncharted opportunity space to reduce owner energy costs, improve facility resilience and serve as a resource to the electric grid

Assessment Timeline

In Conclusion

GEB solutions promise improved resiliency and cost savings

- Both are priorities for DoD and GSA
- Opportunity space for ESCO project financing

GEB solutions are large and complex

- □ Required component systems are often state of the art
- Strategies to orchestrate siloed systems are promising, but pre- commercial

Price signals are uncertain

- Utilities have indicated interest but tariffs are evolving
- □ Will cost savings, rather than energy savings fit within ESCO model?

On the Horizon

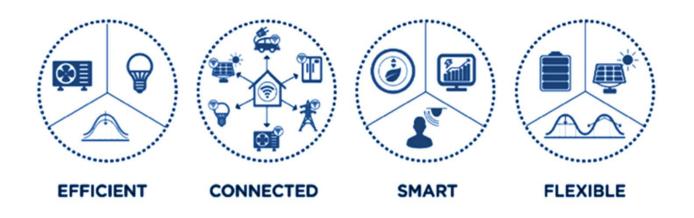
Relevant Research:

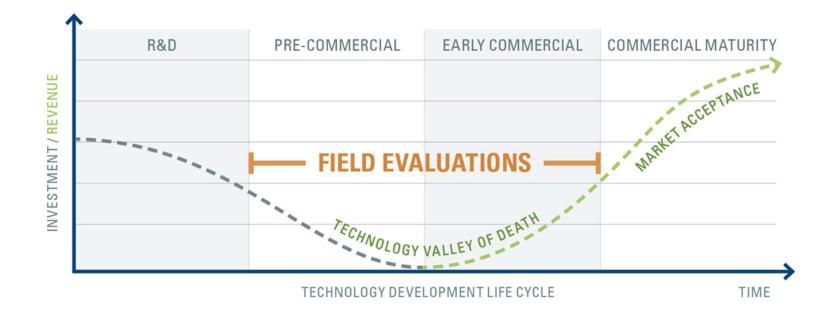
- LBNL load flexibility metric development
- NBI Grid Optimal rating system
- DOE/NREL/RMI Smart and Connected Communities research
- GSA Proving Ground RFI

Upcoming:

- DOE BTO Has issued a NOI about an upcoming FOA for Grid-interactive Efficient Buildings and Smart and Connected Communities
- GSA GEB best practices in ESPC/UESC

Additional Resources


- Rocky Mountain Institute Grid interactive buildings and <u>GSA Value analysis</u>: (<u>https://rmi.org/gebs</u>)
- U.S. General Services Administration <u>Green Building</u> <u>Advisory Committee</u> - GEBs Task Groups
 - 1. Policy recommendations and 2. GEB in ESPC/UESC guidance
- DOE BTO <u>GEBs Homepage</u>
- Laurence Berkeley National Lab <u>FlexLab</u>
- New Buildings Institute <u>GridOptimal Initiative</u>
- NASEO NARUC <u>GEB Working group</u>
- More from ASHRAE, NREL, ACEEE...


Why GEBS?

- Buildings consume 75% of U.S. electricity, and drive peak generating capacity.
- Many electrical loads are flexible and, through advanced controls, can be managed to operate at specific times and at different output levels.
- GEBs are key to to reducing energy costs, supporting better grid management and improving facility resilience.

Why a Field Evaluation of GEB Solutions?

Address the lack of objective performance and cost data that inhibit emerging technology from finding its customer base.

GEBs Sample Measures

Sample Grid-interactive Efficient Building Measure

- 1 Staging loads: Laptop battery charging, AHU fans and electric resistance heaters (in electric only buildings) to reduce peak demand
- 2 Space temperature setback to reduce peak demand
- 3 LED lighting with Advanced lighting controls to enable peak shaving and DR
- 4 Morning preheat / afternoon precool to shift peak
- 5 Thermal mass floors to shift peak
- 6 Grid connected appliances to provide flexibility
- 7 Interior automated blinds to reduce cooling loads and reduce peak demand
- 8 Electrochromic windows to reduce cooling loads and reduce peak demand
- 9 Thermal energy storage to provide flexibility
- 10 Electric Battery storage to provide flexibility and reduce peak demand
- 11 Solar PV to provide onsite generation

Source: RMI, NBI GridOptimal