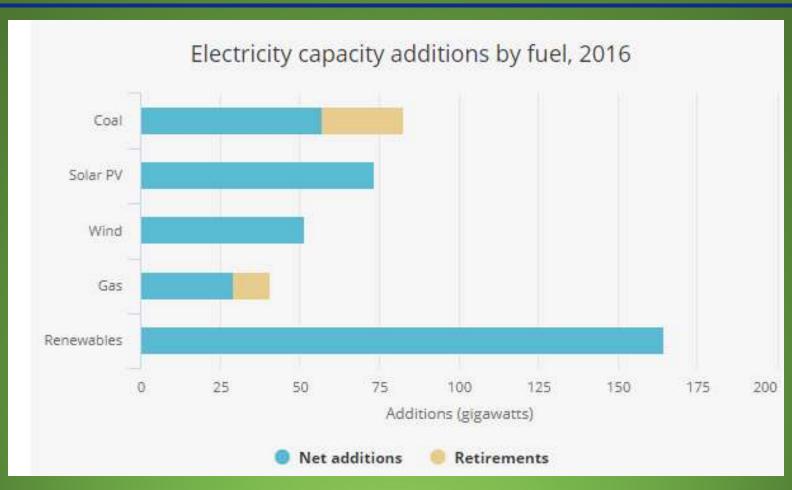
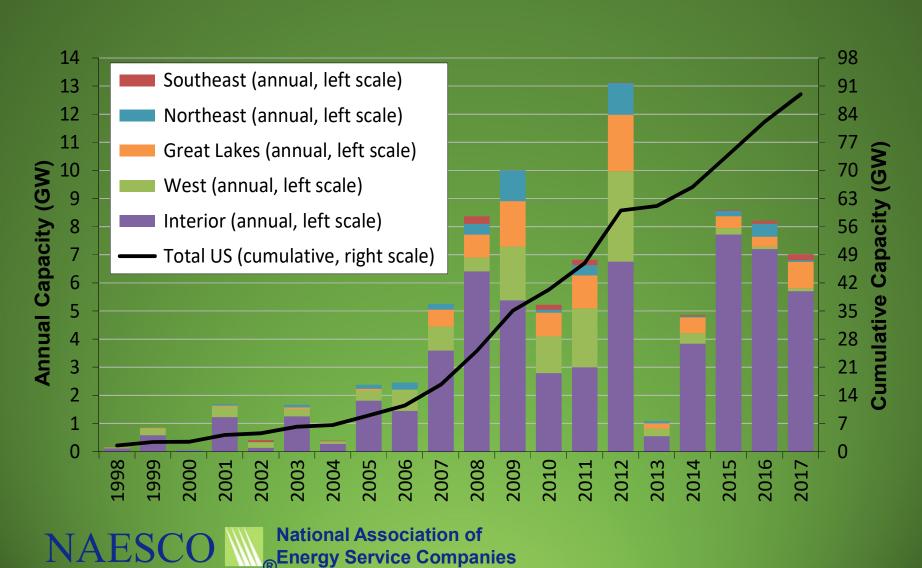
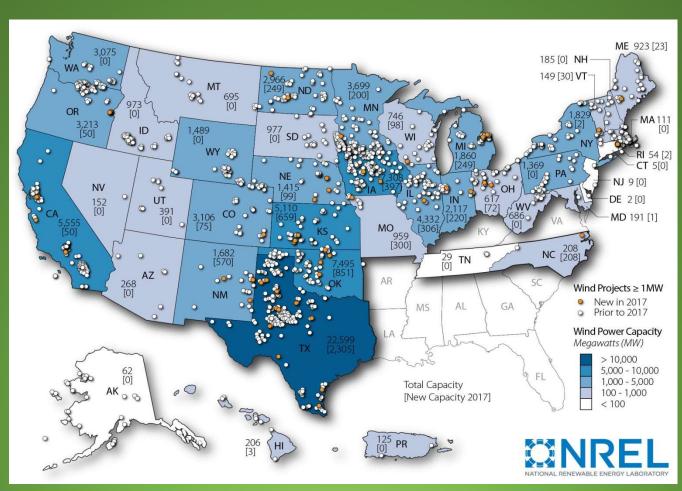
The Winds of Change are coming!


How Renewable Power and Efficiency will create a new paradigm for energy use.

Timothy D. Unruh, PhD, PE, CEM, LEED AP Executive Director National Association of Energy Service Companies


How does the R&D community see efficiency and the grid

- In the Clean Energy world, it is generally broken into three areas:
 - Sustainable Transportation
 - Renewable Power
 - Energy Efficiency
- The DOE technology offices tied to Grid work are:
 - Solar Energy Technologies Office (SETO)
 - Water Power Technologies Office (WPTO)
 - Wind Energy Technologies Office (WETO)
 - Building Technology Office (BTO)

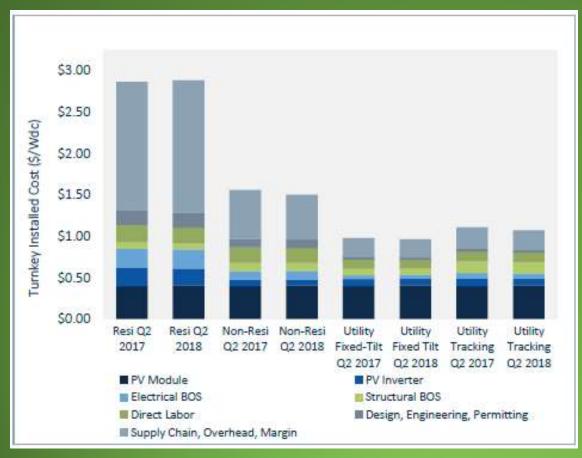

New Capacity is Renewable

Wind Power Additions Continued at a Rapid Pace in 2017, with 7,017 MW of New Capacity, Bringing the Total to 88,973 MW

The Geographic Spread of Wind Power Projects Across the United States Is Broad, with the Exception of the Southeast

Texas Installed the Most Wind Power Capacity in 2017; 14 States Exceed 10% Wind Energy, 4 States Exceed 30%

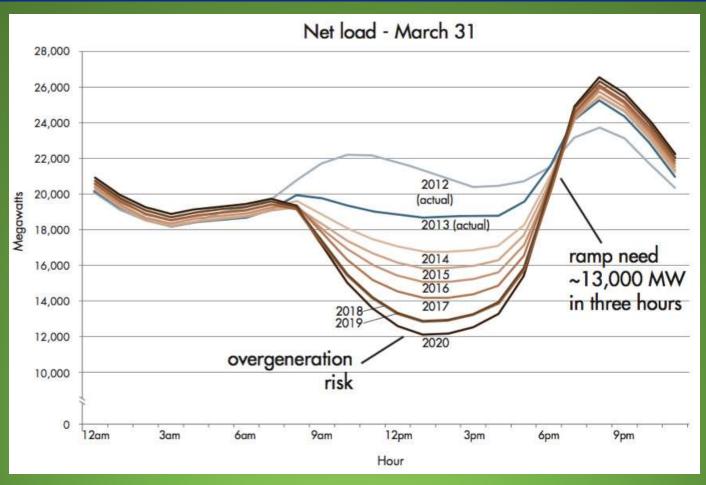
Installed Capacity (MW)				2017 Wind Generation as a Percentage of:			
Annual (20)1 7)	Cumulative (end of 2017) In-State Generation In-State Load		oad_			
Texas	2,305	Texas	22,599	Iowa	36.9%	North Dakota	58.3%
Oklahoma	851	Oklahoma	7,495	Kansas	36.0%	Kansas	47.1%
Kansas	659	Iowa	7,308	Oklahoma	31.9%	Iowa	43.0%
New Mexico	570	California	5,555	South Dakota	30.1%	Oklahoma	40.9%
lowa	397	Kansas	5,110	North Dakota	26.8%	Wyoming	26.3%
Illinois	306	Illinois	4,332	Maine	19.9%	South Dakota	25.7%
Missouri	300	Minnesota	3,699	Minnesota	18.2%	New Mexico	19.7%
North Dakota	249	Oregon	3,213	Colorado	17.6%	Maine	19.5%
Michigan	249	Colorado	3,106	Idaho	15.4%	Colorado	17.5%
Indiana	220	Washington	3,075	Texas	14.8%	Nebraska	17.4%
North Carolina	208	North Dakota	2,996	Nebraska	14.6%	Texas	17.3%
Minnesota	200	Indiana	2,117	New Mexico	13.5%	Minnesota	16.7%
Nebraska	99	Michigan	1,860	Vermont	13.4%	Montana	14.8%
Wisconsin	98	New York	1,829	Oregon	11.1%	Oregon	13.5%
Colorado	75	New Mexico	1,682	Wyoming	9.4%	Idaho	10.4%
Ohio	72	Wyoming	1,489	Montana	7.6%	Illinois	8.3%
Oregon	50	Nebraska	1,415	California	6.8%	Washington	8.3%
California	50	Pennsylvania	1,369	Hawaii	6.5%	Hawaii	6.9%
Vermont	30	South Dakota	977	Washington	6.5%	California	5.5%
Maine	23	Idaho	973	Illinois	6.2%	Vermont	5.2%
Rest of U.S.	7	Rest of U.S.	6,774	Rest of U.S.	1.1%	Rest of U.S.	1.2%
TOTAL	7,017	TOTAL	88,973	TOTAL	6.3%	TOTAL	6.9%



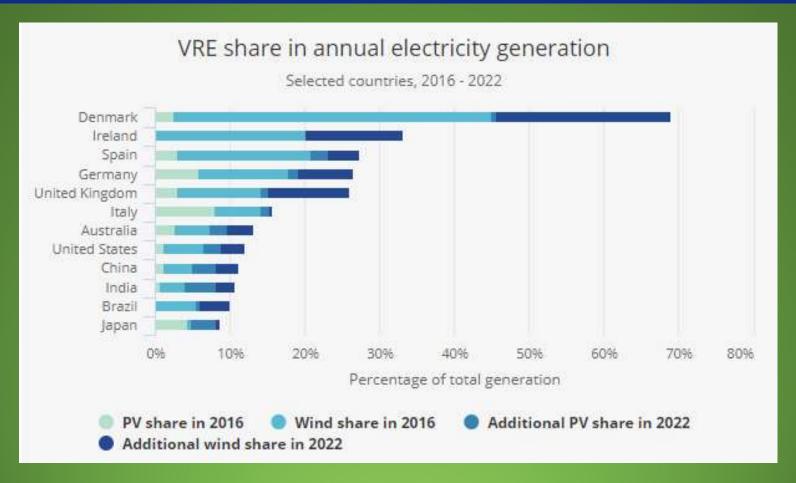
Solar Power

- 29% of all capacity brought online in first half of 2018 was Solar
- Total installed U.S. PV capacity is expected to more than double over the next five years. By 2023, over 14 GWdc of PV capacity will be installed annually
- SunShot Goal of \$0.06/kWh for 2020 was met early in 2017 – Prompting new goal of \$0.03/kWh by 2025

Solar Installations and Prices

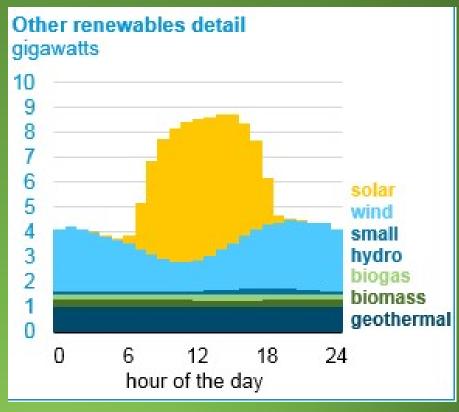


	Rank					
State	2016	2017	Q2 2018			
California	1	1	1			
Texas	6	4	2			
Arizona	7	7	3			
New York	12	12	4			
New Jersey	10	11	5			
Massachusetts	8	5	6			
Minnesota	14	6	7			
Nevada	5	9	8			
North Carolina	4	2	9			
South Carolina	20	8	10			
Maryland	13	13	11			
Colorado	11	20	12			
Florida	9	3	13			
Connecticut	21	21	14			
Hawaii	19	17	15			
New Mexico	15	26	16			
Pennsylvania	25	27	17			
Washington	28	34	18			
Utah	2	19	19			
Virginia	17	10	20			
Oregon	18	14	21			
Illinois	39	41	22			
Indiana	23	24	23			
Ohio	36	29	24			
Washington, D.C.	31	40	25			
Delaware	30	37	26			
Idaho	16	16	27			
lowa	35	35	28			


Challenges and Opportunity

- Renewable Energy is Different than traditional generation
- Non-Dispatchable
- Uncertain Output
- Transmission System
- Inverter Driven

Duck Curve



Variable Renewable

How do we Balance the Variable Energy Sources

- New Operating Sequences
 - Hydropower
 - Pumped Storage
 - Fossil Plants
 - Nuclear Plants
- Technology
 - Batteries
 - Energy Efficiency
 - Electric Vehicles
 - Hybrid Solutions

Beyond Batteries

- While Batteries continue to be the "holy grail" of the power grid as stated by Secretary Rick Perry
- Batteries may not be the only solution
- Energy Efficiency is a prominent application in this effort
 - Using Buildings and their controllability
 - Future markets for efficiency technology
 - Future Opportunity for those that can aggregate buildings, distributed load and batter storage to balance grid services

The Future

- Lower costs of Renewable Power will eventually drive down energy prices
 - Energy Efficiency provides Grid Services
 - System IntegrationDrives Grid
 - New opportunities to leverage efficiency installations

Timothy D. Unruh, PhD, PE, CEM, LEED-AP NAESCO

Executive Director timothy.unruh@naesco.org